skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peng, Chenghui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Exotic structures with interesting physical and chemical properties can be achieved by self-organizing engineered building blocks. The central aim for self-assembly is to precisely control the position and orientation of individual building blocks. In this work, we use topological defects (disclinations) in nematic liquid crystals as templates to direct the self-assembly of colloidal particles into designable 3D structures. By photopatterning preprogrammed molecular orientations at two confining surfaces, we created pre-designable disclination networks and characterized their interactions with spherical colloidal particles. We find that colloidal particles are attracted to different disclinations depending on the orientation of the point defect (elastic dipole) around the colloids. We demonstrate that the positions, network structures, and orientation of the elastic dipoles of the colloidal chains can be pre-designed and reconfigured with remote illumination of polarized light. 
    more » « less